July 22, 2013

Essential oils cool planet

by Robert Tisserand

It now appears that the world would have warmed more than it has were it not for the aromatic cocktail of chemicals emitted by plants. It turns out that this can change the weather – and anything that changes the weather day after day and year after year changes the climate too. While this mechanism is nowhere near strong enough to save us from global warming, it may have been stronger in the past when the air was cleaner. So could it be that Gaia is not powerless after all? Stephen Battersby

It has long been suspected that the envelope of essential oil vapor around an aromatic plant helps protect it from extremes of temperature, especially heat. It makes sense that higher temps lead to greater essential oil evaporation, and this in turn has a cooling effect on the plant (evaporation from a surface is always cooling). Until recently, no one imagined that there might be a cooling phenomenon taking place on a much larger scale.

There is always invisible water in the ambient air. There are also tiny particles floating in the air, such as salt and dust; these are called aerosols. The water vapor and aerosols are constantly bumping into each other. When the air is cooled, some of the water vapor sticks to the aerosols when they collide – this is condensation. Eventually, bigger water droplets form around the aerosol particles, and these clump together with other droplets, forming clouds.

The Gaia hypothesis
The Gaia hypothesis is James Lovelock’s idea that the planet as a whole is capable of environmental self-regulation (Lovelock & Margulis 1974). In 1987, Lovelock and others proposed a feedback mechanism that could counterbalance global warming involving the oceans. Called the CLAW (after its authors) hypothesis, this proposed that algae in the sea emit a gas called dimethyl sulfoxide, which can react with air to form sulfuric acid vapor and condense into aerosols (Charleson et al 1987). Warmer weather causes greater algal growth, and the aerosols could feasibly cool the planet by reflecting sun directly, and also indirectly by making clouds whiter. However, water droplets do not form and grow unless they are at least 100 nanometers in size, and models of the CLAW hypothesis later showed that particles would not reach even close to this size. In addition not enough dimethyl sulfoxide is released to make a difference.

In 2004, scientists at the University of Helsinki proposed an alternative model involving pine trees instead of algae (Kulmala et al 2004). They hypothesized that increased temperatures and atmospheric CO2 would lead to increased photosynthesis and forest growth, leading to an increase in pine oil emissions. Pine oil is mostly composed of monoterpenes such as limonene and pinene. These terpenes rise above the trees, and combine with sulphur dioxide and other aerosols to form especially large cloud droplets. Clouds with larger droplets are whiter, reflecting more sunlight back into space, cooling the land below, and thus counteracting the effects of global warming. (More trees also means more CO2 absorption, so there is a double benefit.) Even if forest growth did not increase, in warmer weather, pine trees emit significantly more essential oil (Fuentes et al 2000).

Global warming offset
This hypothesis now looks like a reality – not so much in terms of increased forest growth, but warmer temperatures do result in greater pine oil emissions, which do cause whiter and larger clouds. A research team at Manchester University has demonstrated that, as aerosols and water accumulate, the presence of terpenes changes the chemistry of the drops, allowing them to attract more water, and this can substantially increase the  number of droplets (Topping et al 2013). A cloud with a greater concentration of droplets is a whiter, fluffier cloud.

The clincher comes from a study involving 11 weather stations around the planet. A team including Markku Kulmala and Paul Paasonen, also at Helsinki, sampled the air at these stations, counting the number of aerosols of 100 nanometeres or larger, and also the level of terpenes. They found a clear pattern (Paasonen et al 2013). The effect is strongest in places such as eastern Siberia and Finland, where the air is clean. “But in more polluted areas, the feedback is not significant” says Paasonen.

The extent of the effect is not known, but it may not be very big. It could offset global warming by as much as 10%, or it might be less than 1%. And, where there is significant atmospheric pollution, pine oil evaporation makes no difference. But it’s one reason to preserve existing pine forests, and also applies to spruce, larch and similar species. Russia, Scandinavia and Canada take note. In theory, it will also apply to any large plantation of aromatic plants, but in reality pine forests may be the only significant contributor because of their mass.

The terpenes are only able to contribute to cloud formation because, once in the atmosphere, they are oxidized by ozone and other gases into slightly larger particles, and this is an important step in the process. So more ozone could also lead to whiter, larger clouds, again supporting the Gaia hypothesis. This is somewhat ironic because high ozone at ground level also oxidizes these terpenes, which of course come from essential oils too, and inhaling the resulting oxidation products can cause respiratory problems. So what is good for the planet above tree level is not so good for people with respiratory problems below. Fortunately, this only happens where there are high ozone levels.

Battersby S 2013 Call in the Clouds. New Scientist issue 2923: 32-35http://www.newscientist.com/article/mg21829231.900

Charlson RJ, Lovelock JE, Andreae MO, Warren G 1987 Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326 (6114): 655–661doi:10.1038/326655a0

Fuentes JD, Lerdau M, Atkinson R et al 2000 Biogenic hydrocarbons in the atmospheric boundary layer: a review. Bulletin of the American Meteorological Society 81: 1537-1575http://nature.berkeley.edu/biometlab/espm228/Fuentes%20et%20al%20BAMS%202000.pdf

Kulmala M, Suni T, Lehtinen KR et al 2004 A new feedback mechanism linking forests, aerosols, and climate. Atmospheric Chemistry & Physics 4: 557-562http://hal.archives-ouvertes.fr/docs/00/29/54/16/PDF/acp-4-557-2004.pdf

Lovelock JE, Margulis, L 1974 Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus Series A 26: 2–10http://www.gps.caltech.edu/classes/ge148c/pdf%20files/lovelock.pdf

Paasonen P, Asmi A, Petaja T et al 2013 Warming-induced increase in aerosol number concentration likely to moderate climate change. Nature Geoscience 6: 438-442http://www.nature.com/ngeo/journal/v6/n6/full/ngeo1800.html

Topping D, Connolly P, McFiggans G 2013 Cloud droplet number enhanced by co-condensation of organic vapours. Nature Geoscience 6: 443-446http://www.nature.com/ngeo/journal/v6/n6/full/ngeo1809.html

Robert Tisserand is internationally recognized for his pioneering work in many aspects of aromatherapy since 1969 and frequent contributor to the aromaconnection blog.

Posted by Blogmistress on July 22, 2013 in Ecological/Cultural Sustainability, Essential Oils/Plant Extractions, Science | Permalink | Comments (0) | TrackBack

March 22, 2012

GM (Genetically Modified) Eucalyptus is one step closer

This is not a new story, but merely another step in the historical process of moving agriculture towards the use of GM in aromatic plants (Although this Eucalyptus is being developed for timber and not for making essential oil.)

The Institute of Science in Society reports on their website on the latest news  in the saga of GM Eucalyptus approval for field testing. In an article ‘Confined’ field releases of Eucalyptus neither confined nor safe scientists at ISIS have criticized the Environmental Analysis process on grounds “uninformed prejudice and hiding crucial details”. The two Eucalyptus species (E. Grandis) and (E. urophylla) that have been hybridized and then cloned are not generally considered to be of aromatic use, but are used for timber. An American Corporation ArborGen has applied for permission to release the clone into the environment in the southeastern US to test how well their genetic modifications work. ISIS does not believe that the Environmental Assessment has adequately addressed a number of important issues. They have asked for wide circulation of their information and granted blanket permission for reproduction, so the aromaconnection is reposting the entire post here so that our readers can see for themselves some of the issues that will arise if genetically modified plants are used. A major part of the concern is the lack of transparency as well as potential safety issues.

ISIS Report 21/03/12

‘Confined’ field releases of Eucalyptus neither confined nor safe

Perfunctory environmental assessment based largely on uninformed prejudice and hiding crucial details on gene constructs under ‘Confidential Business Information’ Prof. Joe Cummins and Dr. Mae-Wan Ho

Please circulate widely and repost, but you must give the URL of the original and preserve all the links back to articles on our website

‘Confidential Business Information’ makes a mockery of risk assessment

An application from ArborGen has taken a sinister turn in declaring most, if not all of the genetically modified (GM) constructs in a Eucalyptus hybrid clone to be tested in environmental release ‘Confidential Business information’, thereby precluding any meaningful independent safety and environmental assessment of the GM trees, or appropriate remedial action and identification in case of harm caused to the environment and innocent bystanders.  The USDA/ APHIS (United States Department of Agriculture/Animal and Plant Health Inspection Service) has yet again made a highly flawed Environmental Assessment (EA) on the proposed release, dismissing every issue on safety largely on a priori assumptions and in the absence of real data [1].

ArborGen, LLC, based in Summerville, South Carolina, has applied for the ‘confined’ environmental release of the clone EH1 of a Eucalyptus grandis × Eucalyptus urophylla hybrid genetically modified with various constructs at six locations encompassing a total of 14.7 acres in the States of Alabama, Florida, Mississippi, and South Carolina [2]. (As of September 2011, ArborGen is growing a total of approximately 67 acres of GM trees on 18 of the 32 permitted locations.) Five of the locations for the current release already have active APHIS permits for GM trees granted previously. The sixth site in South Carolina has been listed as a holding site for GM trees in previous APHIS permits and notifications, and is a new location for the release of GM Eucalyptus. ArborGen is requesting that trees be allowed to flower at four locations in Alabama, Florida and Mississippi. At two locations in South Carolina, ArborGen has requested to release trees in containers and have indicated they will not allow the trees to flower.

The stated purpose of the field release is to assess the effectiveness of different gene constructs intended to confer cold tolerance, to alter lignin biosynthesis, to alter growth rate, along with testing the efficacy of the barnase gene designed to alter fertility. In addition, the trees have been engineered with a selectable marker that confers resistance to the antibiotic kanamycin. With the exception of the C-Repeat Binding Factor (CBF) gene (see later), the barnase gene, and nptII gene, all genes are claimed as Confidential Business Information (CBI), even though they are different constructs from those in trees previously permitted for environmental releases by APHIS.

The designation of the majority of transgenic modifications CBI certainly prevents any rational, independent evaluation of the impact of those genes and the GM Eucalyptus on the environment, and on human and animal health.  Unfortunately, USDA does not appear to have a mechanism for identifying and discarding frivolous CBI designations.  The avalanche of CBI designations of transgenic crop and tree modifications suggests that the designation is being used to avoid doing proper risk assessment and also making it impossible for independent risk assessments that could otherwise be done; and in addition, prevent the detection of adverse side effects due to the modifications, which would also make it impossible to take appropriate remedial action. This is clearly unacceptable for protection of public health and the environment. The USDA should open the CBI designations to independent adjudication.

A number of risks were assessed in a perfunctory fashion and dismissed based to varying degrees on a priori assumptions in the absence of real data from dedicated investigations.

Alteration in susceptibility to diseases or insects

This was dismissed largely on basis of the statement in ArborGen’s application that “none of the genes being engineered into the Eucalyptus plants are expected to alter the susceptibility of the transgenic Eucalyptus plants to disease of insect damage.”

We have previously pointed out that reducing lignin in trees would make them more susceptible to attack by insects and pathogens (see [3] Low Lignin GM Trees and Forage Crops, SiS 23).

Risks from transgenes

Kanamycin resistance Risks from the kanamycin resistance gene is dismissed even though we have pointed out that kanamycin is still in clinical use and also kanamycin resistance cross-reacts with new antibiotics  [4] (Kanamycin Still Used and Cross-Reacts with New Antibiotics, ISIS Report).

Cold tolerance C-Repeat Binding Factor (CBF) genes are transcription factors belonging to the AP2/EREBP family of DNA binding proteins, which recognize a cold- and drought-responsive DNA regulatory sequence designated the C-repeat (CRT)/dehydration-responsive element (DRE), found in the promoter regions of many cold-inducible genes. When CBF genes are overpressed constitutively, as when placed under the control of the CaMV 35S promoter, it was associated with stunting, reduced flowering and lack of tuber production in potatoes. However, when the CBF gene was placed under the control of a cold-induced promoter, rd29A, it increased tolerance to freezing while restoring growth and tuber production to wild-type levels. The GM Eucalyptus trees tested have the CBF gene under the control of a cold inducible promoter, which causes the gene to be expressed only when cold, and hence “not expected to produce any toxic substance and is not expected to alter the characteristics of the engineered plants”.

This large assumption is far from justified as the Eucalyptus version, EguCBF1, when over expressed, not only results in cold tolerance,  but also increased water retention, higher oil gland  density and wax deposition, and over expression of anthocyanin  pigments [5].  The gene network influenced by CBF gene modification produces highly pleiotropic effects. But there does not appear to have been any investigation on the production of unintended metabolites, proteins, or nuclei acids in the  modified trees, all of which could have health and environmental impacts.

Gene for altered fertility We have commented on the dangers of the barnase gene on numerous previous occasions, most recently in 2008 [6] USDA FONSI for Transgenic Poplars Absurd & Dangerous, SiS 38). It is a well-known cytotoxic protein that breaks down RNA. Because they are from a soil bacterium, and unrelated to any mammalian RNAses, they are not susceptible to eukaryotic RNAse inhibitors. Consequently, they are highly toxic, and are actually being engineered currently as a means of killing cancer cells [7]. But USDA has dismissed the dangers of this gene in the current EA as in previous EAs. This is unconscionable. Although the barnase is being used to prevent pollen formation, this is not 100 effective, and many beneficial insects and other wild-life could well be affected.

Apart from the above genes, the genes for altered lignin (3 of them), genes for altered growth (4), non-coding sequences (undisclosed number derived from plants and plant pathogens), were all not mentioned or explicitly not disclosed under CBI, and consequently, not risk assessed at all before stating that they are not expected to pose any risks.

Mode of transformation and hazards of horizontal gene transfer

One aspect that needs to be highlighted is the mode of transformation of the GM Eucalyptus involved Agrobacterium. This is a serious unresolved hazard in genetic modification that we have drawn attention to for years, most recently in 2011 [8] Scientists Discover New Route forGM-gene 'Escape' (SiS 50). Research commissioned by the UK Department of the Environment, Food and Rural Affairs (DEFRA) in the 1990s had already revealed that it is very difficult, if not impossible to get rid of the Agrobacterium vector used in creating the transgenic plant. The bacterium is likely to remain dormant even after the transgenic plants are transplanted into the soil. Hence, it is expected to facilitate horizontal gene transfer, in the first instance, to wild-type Agrobacterium in the soil, and further afield, to other bacteria and fungi in the soil. It now transpires that Agrobacterium can enlarge their host range to infect other species and exchange genes with them through hormones produced at the site of plant wounds ([9] Scientists Discover New Route for GM-gene 'Escape', SiS 50).

Pollen spread

The applicant has indicated that they are not aware of any commercial plantings of sexually compatible Eucalyptus species within 1 000 meters of the proposed test plot location at any of these sites. Therefore, based upon the limited distance that viable pollen is likely to occur outside a tree stand, it is deemed highly unlikely that gene flow would occur outside of the confined field test sites at these locations.  An Australian study, however, found that remnant populations of Eucalyptus were connected by pollen dispersal to pollen sources up to 1.94 kilometers away [10]. 

It is by now obvious that transgenes can also spread horizontally to all species interacting with the trees and pollen, in the air, in the soil and in the water, as we have repeatedly pointed out to regulators [9].  Needless to say, horizontal gene transfer was dismissed.

Deadly yeast in Eucalyptus

Cryptococcus  neoformans gattii is a yeast pathogen hosted by a variety of Eucalyptus species as well as other tree species.  It causes systemic fungal infections in humans, leading to fungal meningitis and death.  C. neoformans gattii has been found on a number of Eucalyptus hosts, some being grown in commercial plantations and imported and exported for ornamental use. People have contracted and died from cryptococcosis in India, Africa, Taiwan, South America and California.  C. neoformans gattii infections are found particularly in AIDS patients due to their weakened immune systems. Infections with this fungus are rare in those with fully functioning immune systems. For this reason, C. neoformans gattii is sometimes referred to as an opportunistic fungus. There was an outbreak of cryptococcal disease on the eastern part of Vancouver Island, British Columbia in 1999. The disease was previously only known to occur in tropical or semi-tropical climates. The risk that these field trials will result in a higher incidence of the fungus in the US and thereby pose a risk to human health is considered negligible for the following reasons. First, there is not a clear association between E. grandis or E. urophylla and C. gattii. Second, there is no reason to believe that the genetic modification of the hybrids will alter the association of the trees with C. gattii. Third, the scale of the field tests is miniscule compared to the vast expanses of native trees that could potentially harbour the pathogen [2].

But there is already evidence among forest or urban trees that Eucalyptus species are homes for the deadly yeast.  Furthermore, there is no vast expanse of native species in the US that are homes for the toxic yeast, according to the peer reviewed scientific publications  [11-13]. The deadly yeast should have been studied in the transgenic trees rather than being groundlessly and a priori dismissed by USDA.

Issues raised in previous submissions on transgenic Eucalyptus still unresolved

The Institute of Science in Society  previously submitted several briefs objecting to environmental releases of GM Eucalyptus, and dealing with other issues in more detail, such as the alteration in susceptibility to disease or insects , the potential of the Eucalyptus to harbour plant pests, the kanamycin resistance selectable marker gene, the barnase gene, genes for altered lignin, and the deadly yeast C. gattii [14-15] Field Testing Genetically Engineered Eucalyptus: Environment Assessment Still Inadequate, SiS 46, GM Eucalyptus Environmental Assessment Irregular, SiS 35]. None of the issues we raised have been properly addressed, let alone resolved.

We can only repeat our call [16] for a Moratorium on all GM Trees and Ban on GM Forest Trees (SiS 35).

  1. DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service  [Docket No. APHIS–2011–0130] ArborGen, LLC; Availability of an Environmental Assessment for Controlled Release of a Genetically Engineered Eucalyptus Hybrid  Federal  Register Vol.  77,  No.  28 Friday, February 10,  2012  Notices 7123.
  2. Eck C. Permit application 11-052-101rm received from ArborGen Field testing of genetically engineered Eucalyptus grandis X Eucalyptus urophylla Draft Environmental Assessment December 6, 2011 http://www.aphis.usda.gov/brs/aphisdocs/11_052101rm_pea.pdf
  3. Cummins J. Low lignin GM trees and forage crops. Science in Society 23, 38-39, 2004.
  4. Cummins J. Kanamycin still used and cross-reacts with new antibiotics. ISIS report, 27 May 2001, http://www.i-sis.org.uk/kanomycin.php
  5. Navarro M, Ayax C, Martinez Y, Laur J, El Kayal W, Marque C, Teulières C. Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnol J 2011, 9(1), 50-63.
  6. Cummins J and Ho MW. USDA FONSI for transgenic poplars absurd & dangerous. Science in Society 38, 40-41, 2008.
  7. Ulyanova V, Vershinina V and Ilinskaya O. Barnase and binase: twins with distinct fates. The FEBS Journal 2011, 3633-43.
  8. Ho MW. Scientists discover new route for GM-gene ‘escape’. Science in Society 50, 14-16, 2011.
  9. Knight CJ, Bailey AM, Foster GD. Investigating Agrobacterium-mediated transformation of Verticillium albo-atrum on plant surfaces. PLOS ONE 2010, 5(10): e13684. Doi:10.1371/journal.pone.0013684
  10. Sampson JF, Byrne M. Outcrossing between an agroforestry plantation and remnant native populations of Eucalyptus loxophleba. Mol Ecol 2008, 17(11), 2769-81.
  11. Chen M, Liao WQ, Wu SX, Yao ZR, Pan WH, Liao Y. Taxonomic analysis of cryptococcus species complex strain S8012 revealed Cryptococcus gattii with high heterogeneity on the genetics. Chin Med J (Engl). 2011, 124(13), 2051-6.
  12. Chowdhary A, Randhawa HS, Boekhout T, Hagen F, Klaassen CH, Meis JF. Temperate climate niche for Cryptococcus gattii in Northern Europe. Emerg Infect Dis. 2012, 18(1), 172-4. doi: 10.3201/eid1801.111190
  13. Crous PW, Groenewald JZ, Shivas RG, Edwards J, Seifert KA, Alfenas AC, Alfenas RF, Burgess TI, Carnegie AJ, Hardy GE, Hiscock N, Hüberli D, Jung T, Louis-Seize G, Okada G, Pereira OL, Stukely MJ, Wang W, White GP, Young AJ, McTaggart AR, Pascoe IG, Porter IJ, Quaedvlieg W. Persoonia 2011, 26, 108-56.
  14. Cummins J.  Field testing genetically Engineered Eucalyptus: rnvironment assessment still inadequate.  Science in Society 46, 36, 2010.
  15. Cummins J and Ho MW. GM eucalyptus environmental assessment irregular. Science in Society 35, 50, 2007.
  16. Cummins J and Ho MW. Moratorium on all GM trees and ban on forest trees. Science in Society 35, 32-34, 2007.

Reposted from:


by Rob

Posted by Rob on March 22, 2012 in Ecological/Cultural Sustainability, Oil Crops, Regulatory Issues, Safety/Toxicity, Science | Permalink | Comments (0) | TrackBack

December 12, 2011

Lavender oil and negative innuendo

by Robert Tisserand

In a recent blog post an Environmental Working Group (EWG) research assistant suggests that lavender oil may be unsafe, saying: “the science is still evolving and safety can’t be assumed.” The science is still evolving? Isn’t that true of anything? Are we just sowing the seeds of doubt here?

I have written a number of posts about the EWG and sloppy science. Their modus operandi involves highlighting negative information, along with liberal use of the phrase “has been linked to”. Facts are so often distorted that their reputation in scientific circles is all but worthless. I have never read an EWG report in which both sides of an argument are presented. The problem I have with this approach is that the EWG audience is consumers, who have neither the scientific training nor the knowledge and expertise to challenge what is being said. In spite of this many do, because they instinctively feel that something is not right.

Skin allergy
Lavender oil “has been linked to” allergic reactions, it’s true. But how strong is that link? After all, if you look hard enough, you will find at least one allergic reaction report for almost every substance used in cosmetics. Cherry picking a few negative studies is not a useful way to help consumers assess product safety. What we need is a comparative rating that clearly flags high-risk ingredients, along with practical safety guidelines.

“Allergy epidemics” have occurred in the past, most often with preservatives. As use becomes more extensive, adverse reactions escalate, and eventually the substance is either banned or restricted. In spite of widespread use, this is not happening with lavender, which has been the most popular essential oil for aromatherapy use since the 1970s.

The EWG post is written by Swati Sharma. She tells us that: “Despite its ubiquity in cosmetics, researchers in Japan who compared eight essential oils found that lavender caused the greatest number of skin allergies.” No it did not, unless you only look at two of the nine years of the study! The Japanese researchers tested six essential oils, one absolute and two essential oil constituents. The essential oil that produced the most adverse reactions was ylang-ylang (tested at 5%), followed by geranium (tested at 20%) followed by lavender (also tested at 20%). And since all the other substances were tested at either 5% or 2%, the relative risk of each cannot be compared anyway. The higher the test concentration, the greater will be the number of reactions. And, the Japanese subjects were all dermatology patients “suspected of cosmetic dermatitis”, an especially high-risk group.

Considering that the lavender oil was patch tested at 20% in a high-risk population, and that only 1.4% (21 of 1,483) of patients had an adverse reaction, this does not suggest a significant allergen. Other research points to lavender oil presenting a very low risk. When 50 healthy volunteers were patch tested with the undiluted oil, there were no reactions (Meneghini et al 1971). Similarly, none were produced in 25 volunteers tested with lavender at 10% (Opdyke 1976 p451). In a study of 200 dermatitis patients in Poland, none were sensitive to 2% lavender oil (Rudzki et al 1976). In a Danish study, two of 217 dermatitis patients (0.9%) tested positive to 2% lavender oil (Veien et al 2004). Tested at 1%, lavender oil produced no reactions in 273 dermatitis patients (Meneghini et al 1971).

Taken together, these results show that two of 690 dermatitis patients (0.3%) reacted to lavender oil when patch tested at 1% or 2%. However, extrapolating from patch test data on dermatology patients to the general population is notoriously difficult (especially since the conditions of patch testing exaggerate risk) and the actual number of people with adverse reactions to lavender is very much less than 0.3%. Over a 15 year period (1986-2000) there have only been five cases of lavender oil allergy reported worldwide (Brandão 1986, De Groot 1996, Keane et al 2000, Schaller & Korting 1995, Selvaag et al 1995) and three were people with multiple allergies. This is in contrast to millions of bottles of undiluted lavender oil being sold to consumers per annum, and millions more personal care products containing lavender oil.

From all of the above we can conclude that a 20% concentration of lavender oil might be risky for Japanese consumers with cosmetic allergies, but 2% is not a risk to anyone, and even undiluted lavender is safe to use on healthy skin. Not only is lavender a very low-risk skin allergen, it possesses anti-allergic properties. Topically applied, the oil inhibited immediate-type allergic reactions by inhibiting the release of histamine from mast cells (Kim et al 1999). How is this possible? Probably because in most cases, allergies only occur from the use of oxidized lavender oil. The unoxidized oil is anti-allergic, and is even moderately antioxidant (Wei and Shibamoto 2007).

Sharma tells us that linalyl acetate, a major constituent of lavender oil, can oxidize in the presence of atmospheric oxygen, “forming allergens that can cause contact dermatitis” (Sköld et al 2008). Indeed it can, as can linalool, the other major constituent of lavender oil (Sköld et al 2004). However, these are theoretical risks, not actual risks, and lavender oil oxidation is a process that takes many months, even years. What this research suggests is that products containing lavender oil should be protected from oxidation by the addition of antioxidants, and that very old products should be discarded. The International Fragrance Association (IFRA) does not have a regulation for lavender oil, but it does for linalool. Referring to linalool-rich essential oils, the IFRA guideline recommends the addition of an antioxidant: “The addition of 0.1% BHT or a-tocopherol has shown great efficiency” (IFRA 2009).

Next, Sharma informs us that “lavender oil may be toxic to human skin cells” though curiously no reference is given (it’s Prashar et al 2004). I addressed this issue in a previous post about lavender, in which I explain how we know that the oil is not a skin irritant, and is not toxic to skin cells when applied to human skin.

Hormone disruption
Finally, Sharma raises the question of lavender oil and hormone disruption, an issue I have also addressed previously, in this article. To sum up, there was no established link between lavender oil and breast growth in three pre-perbertal boys, but lavender oil did show a weak in vitro estrogenic action in two (of the four possible) types of in vitro test for estrogenic activity (Henley et al 2007). None of this establishes that lavender oil disrupts hormones. To quote Diel et al (1999): “…even a combined use of several in vitro test systems is not able to predict the occurring action of a substance in the organism.” In other research, lavender oil was significantly toxic to human breast cancer cells (Zu et al 2010) suggesting that it would prevent breast cancer, and not increase risk.

Summary points
Consumer products containing lavender oil may benefit from the addition of an antioxidant, such as alpha-tocopherol. This should be used at 0.1-0.2% (note that using more is not more effective).

Bottles of lavender oil, or products containing lavender oil, that are more than 12 months old (after first use) should be discarded if they no longer smell fresh.

There is a theoretical risk of skin allergy from lavender oil, but this risk is extremely low. Restricting the percentage of lavender oil in leave-on products (skin creams, lotions, gels) to 2% would be over-cautious, but combined with the addition of an antioxidant, will make a product super-safe.

Lavender oil has a weak in vitro estrogenic activity, but there is no reason to believe that this translates to a hormone-disrupting effect in humans.

Brandão FM 1986 Occupational allergy to lavender oil. Contact Dermatitis 15:249-250

De Groot AC 1996 Airborne allergic contact dermatitis from tea tree oil. Contact Dermatitis 35:304-305

Diel P, Smolnikar K, Michna H 1999 In vitro test systems for the evaluation of the estrogenic activity of natural products. Planta Medica 65:197-203

Keane FM, Smith HR, White IR et al 2000 Occupational allergic contact dermatitis in two aromatherapists. Contact Dermatitis 43:49-51

Henley DV, Lipson N, Korach KS et al 2007 Prebubertal gynecomastia linked to
lavender and tea tree oils. New England Journal of Medicine 365: 479-485

IFRA 2009 Standards, including amendments as of October 14th 2009. International Fragrance Association, Brussels. http://www.ifraorg.org

Kim HM, Cho SH 1999 Lavender oil inhibits immediate-type allergic reaction in mice and rats. Journal of Pharmacy & Pharmacology 51:221-226

Meneghini CL, Rantuccio F, Lomuto M 1971 Additives, vehicles and active drugs of topical medicaments as causes of delayed-type allergic dermatitis. Dermatologica 143:137-147

Opdyke DL 1976 Monographs on fragrance raw materials. Food & Cosmetics Toxicology 14 supplement

Prashar A, Locke IC, Evans CS 2004 Cytotoxicity of lavender oil and its major components to human skin cells. Cell Proliferation 37:221-229

Rudzki E, Grzywa Z, Brud WS 1976 Sensitivity to 35 essential oils. Contact Dermatitis 2:196-200

Schaller M, Korting HC 1995 Allergic airborne contact dermatitis from essential oils used in aromatherapy. Clinical & Experimental Dermatology 20:143-145

Selvaag E, Holm JO, Thune P 1995 Allergic contact dermatitis in an aromatherapist with multiple sensitizations to essential oils. Contact Dermatitis 33:354-355

Sköld M, Börje A, Harambasic E et al 2004 Contact allergens formed on air exposure of linalool. Identification and quantification of primary and secondary oxidation products and the effect on skin sensitization. Chemical Research in Toxicology 17:1697-1705

Sköld M, Hagvall L, Karlberg AT et al 2008 Autoxidation of linalyl acetate, the main component of lavender oil, creates potent contact allergens. Contact Dermatitis 58:9-14

Sugiura M, Hayakawa R, Kato Y et al 2000 Results of patch testing with lavender oil in Japan. Contact Dermatitis 43:157-160

Veien NK, Rosner K, Skovgaard GL 2004 Is tea tree oil an important contact allergen? Contact Dermatitis 50:378-379

Wei A, Shibamoto T 2007 Antioxidant activities and volatile constituents of various essential oils. Journal of Agricultural & Food Chemistry 55:1737-1742

Zu Y, Yu H, Liang L et al 2010 Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells. Molecules 15:3200-3210

Robert Tisserand is internationally recognized for his pioneering work in many aspects of aromatherapy since 1969 and frequent contributor to the aromaconnection blog.

Posted by Blogmistress on December 12, 2011 in Aromatherapy, Cosmetics, Lavender/Tea Tree/Gynecomastia, Safety/Toxicity, Science | Permalink | Comments (4) | TrackBack

June 22, 2011

Negative Bias

by Robert Tisserand

Safety legislation does not always accord with current knowledge on safety, for the simple reason that new scientific data are always being published. Guidelines are periodically made more stringent, but they are almost never loosened, even when new information suggests it. Regulators don’t like to admit that they were wrong, and this is especially true of the European Union. In the United States, although the FDA has few regulations that directly restrict cosmetic ingredients, most manufacturers, especially the larger ones, follow both IFRA guidelines and EU regulations. Taken together, these result in some extremely stringent measures for essential oils.

The reason that US manufacturers follow EU guidelines is because, if they sell internationally, they use one formulation that works in all regions – multiple formulations are uneconomic. And, although IFRA guidelines are technically a voluntary code, they are very widely adhered to for two reasons. One, almost all

Coriandrum sativum

large cosmetics manufacturers are full members of IFRA, and as such they formally agree to follow the IFRA code. Two, even non-members want to be sure they are manufacturing safe products, plus they don’t want to risk the possible legal ramifications of not adhering to industry best-practice guidelines. IFRA recently put out a video called Making Scents, which you can find here.

In spite of all this, some North American consumer groups are concerned that many personal care products contain ingredients that are highly toxic, and that are banned in Europe. There are particular concerns about fragrances, which are said to contain chemicals that are hormone disrupting, neurotoxic, teratogenic or

Coriandrum sativum

carcinogenic. The fact that fragrance ingredients are not declared on labels feeds the perception of hidden toxins lurking. However, these concerns are often misplaced. For example, fears of neurotoxicity may be inappropriately based on the results of toxicity testing, in which the signs and symptoms of a fatal dose are noted. And, concerns about skin allergy are sometimes based on results that, when closely examined, do not represent a significant risk for consumer products.

There is a growing hysteria about “chemicals” in consumer products, as if the fact of a substance being a chemical made it inherently toxic. It is understandable that consumers do not know the difference between a synthetic chemical and a naturally-occurring one. (Synthetic chemicals, while not necessarily more toxic, are less environmentally friendly.) However, even the Environmental Working Group appears not to know which essential oils contain which chemical constituents.

The European Union “allergens”
In 2003, the European Union’s Scientific Committee on Cosmetic Products and Non-Food Products (SCCNFP) published a directive listing 26 fragrance materials as skin allergens (SCCNFP 1999). One of the criteria listed was that “Positive patch test data from more than one patient in more than one independent centre should be present.” In other words, a substance could be listed as an allergen if there were two or more reports of skin allergy. Even if these two reports occurred over, say, 20 years. Several papers have since been published strongly suggesting that many of the 26 fragrance materials should not be listed as allergens at all. The EU has done nothing but dig its heels in.

Linalool is one of the EU “allergens”. If present in a cosmetic product at over 100 ppm (0.01%) in a wash-off product or 10 ppm (0.001%) in a leave-on product, linalool must be declared on the ingredient list if sold in an EU member state. Doesn’t sound too bad, does it? The problem is, neither manufacturers nor retailers want to get sued, or branded as selling unsafe products, and most retailers will only carry cosmetics that have passed an independent safety assessment, which is almost entirely based on looking at the levels of “allergens”. So the de facto result is that very few manufacturers take the risk of having a “known allergen” in a product at over the declarable amount.

Linalool is a major constituent of some commonly-used essential oils and is found in approximately 200 other essential oils. But linalool is not a high-risk allergen. In fact, it’s superlatively safe on the skin. Between 1969 and 2007 (38 years), a total of thirteen dermatitis patients out of the 25,164 tested, (0.05%) were allergic to linalool when patch tested, and less than this actually had allergic reactions to products containing linalool (De Groot 1987, De Groot et al 2000, Fregert and Hjorth 1969, Frosch et al 1995, Itoh et al 1986, Santucci et al 1987, Schnuch et al 2007). Yes, 0.05% is more than zero, but it’s pretty close to the 0.03% reaction rate for petrolatum, the least dermally allergenic substance known to mankind. One way of looking at this is that adding linalool to a product increases risk by about 0.02%. That’s probably less than almost any other known cosmetic ingredient.

Linalool table

But, this assumes that patch testing reflects real-world risk, which it does not, in fact it is designed to exaggerate risk. It does this in two ways. One, patches are non-permeable, and are left adhered to the skin for 48 hours. Two, the concentrations used in testing are higher than those encountered in personal care products. Linalool is tested at a 5%, 10% or 20% dilution. Since skin allergies are dilution-dependent, lower dilution will carry less risk. There is no dermatological or other scientific rationale that suggests extrapolating data from a 10% dilution to a safety threshold of 0.001% – 10,000 times less! Quite the opposite – the clinical data suggest that a 10% concentration of linalool in cosmetics is virtually non-allergenic. When tested at 5% on a total of 1,399 dermatology patients, linalool produced not one single allergic reaction (Frosch et al 1995, Itoh et al 1986, Santucci et al 1987).

The EU listed linalool as an allergen because – according to their own report – five dermatitis patients had allergic reactions to it over a five-year period on patch testing. Considering that linalool is (or at least used to be) one of the most commonly-used fragrance materials, an average of one reported adverse reaction per year, on planet earth, is about a negligible as it is possible to get. But, this still does not represent actual risk to consumers, which is likely much lower.

Data from Schnuch et al 2007

Data from Schnuch et al 2007

Of the 26 EU “allergens”, 16 are essential oil constituents and two are absolutes. In 2007, these were each tested on groups of 2,000 or more dermatology patients. Of the 16, six produced so few adverse reactions that the report concluded that they should not be classed as allergens at all. Benzyl benzoate, for example, produced not a single adverse reaction in 2,003 patients (Schnuch et al 2007). The other non-allergenic constituents are linalool, limonene, benzyl alcohol, benzyl salicylate and anisyl alcohol, and other dermatologists have questioned the classification of linalool and anisyl alcohol as allergens (Gilpin and Maibach 2010, Hostýnek and Maibach 2003a). Other research has shown that adverse reactions to coumarin are due to impurities present in the synthetic coumarin used for testing, and that 99% pure coumarin is not allergenic (Vocanson et al 2006, 2007). And, Hostýnek and Maibach (2003b) argue that the evidence for farnesol being an allergen is highly debatable. If we add farnesol and coumarin to the list of spurious allergens, then 50% of the EU 16 are a mistake.

These voices of dissent are not insignificant, and include some of the most distinguished dermatologists in the world. They question whether the patch test information is “clinically relevant”, and whether it can be extrapolated to estimate risk in the general population. Certainly, the percentages in the Table above under “% of patients reacting” do not represent real-world risk, and for many of these substances there is not a single case of skin reaction that has been proven to be caused by the substance in question. What these numbers do suggest is the relative potency between the different substances. Or at least, it would if they had all been tested at the same % concentration. And just to be clear, the division into three groups by Schnuch et al is theirs, not mine.

The David Suzuki Foundation
Paradoxically, EU cosmetics legislation is frequently cited in North America as an example of what cosmetics legislation should look like. In Canada for example, the David Suzuki Foundation (DSF), an environmental activist group, has this message for their supporters: “Consumers have the right to know about all ingredients contained in cosmetics – including fragrance chemicals. European regulations are stronger. They require 26 sensitizers used as cosmetic fragrances to be identified on the label. That’s a start, and it’s better than what we have in Canada.”

The DSF says that their mission is “to protect the diversity of nature” but the European legislation unfairly targets the farmers that grow the plants that produce the essential oils that contain the chemicals that David Suzuki wants to see identified on labels, a move which will inevitably lead to further restriction. I am not opposed to the principal of ingredient declaration for fragrances, and I applaud those manufacturers that have already made this move. However, I believe that if a product contains lavender oil, this should be declared as “lavender oil”, and the 70 or so constituents of lavender oil should not have to be listed. I have already argued here against the idea that constituents of ingredients should be declared on cosmetic labels.

The Environmental Working Group
The Environmental Working Group (EWG) is a US-based organization that calls even more stridently for increased legislation of fragrance ingredients. Fragrances, we are told, contain chemicals that are neurotoxic, teratogenic, carcinogenic and hormone disrupting.

Lemon 500x332On its Skin Deep database, the EWG bases hazard ratings of essential oil constituents largely on the flawed EU legislation. The EWG makes no reference to the dissenting voices in the scientific community, either because it is unaware of such dissent, or because it chooses to ignore it. The EWG is not a regulatory body, nor does it publish safety guidelines, it simply labels a cosmetic ingredient with a number from 0 to 10, with 10 being the most hazardous. It does give some explanation for how this number is arrived at, but no specific recommendations are made. Skin Deep gives linalool a hazard rating of 4. However, Aniba rosaeodora (Rosewood) oil, which contains 82-90% linalool, has a hazard rating of 0-1. Coriander seed oil, which contains 59-88% linalool, has a hazard rating of 1. These hazard ratings seem to be inconsistent.

Skin Deep, at least, is consistent in its inconsistency. Limonene has a hazard rating of 6, and yet lemon oil (57-76% limonene) has a hazard rating of 0, and sweet orange oil (84-96% limonene) a hazard rating of 1. Safrole (a rodent carcinogen) is given a hazard rating of 7, while sassafras oil (83-90% safrole) is given a hazard rating of 0. Sassafras oil contains more safrole than any other essential oil. Some other carcinogens found in essential oils, asarone and estragole for instance, are not even mentioned on the Skin Deep database. Pulegone is a hepatotoxic compound found in pennyroyal oil. In spite of this, both the compound and the essential oil are rated as 0. Go figure.

If you look at “Fragrance” on the EWG’s Skin Deep database, you will see that it has a rating of 8. This applies to any fragrance at all, and 11,376 products are listed. This seems more like a declaration of war on the personal care products industry than a genuine safety guideline! And note that “fragrance” is rated as far more hazardous than either sassafras oil (a known carcinogen) or pennyroyal oil (a known hepatotoxin). The principal reasons given for the high rating for fragrance are:

Allergies & immunotoxicity
Data gaps

It’s worth taking a closer look at the Skin Deep rationale:

Allergies & immunotoxicity
This is further defined as “linked to immunotoxicity, or harm to the immune system, a class of health problems that manifest as allergic reactions or an impaired capacity to fight disease and repair damaged tissues in the body.” Perfume is then cited as a “known human immune system toxicant”, and a single reference is given: SCCNFP 1999. This is the opinion paper that eventually became a legal directive in 2003.

Since this is a 63 page document, there is insufficient space here to dissect it in detail. To pick one simple fact, the document concerns 24 fragrance ingredients that, it is recommended, should be restricted in consumer products because they are potential contact allergens (oakmoss absolute and treemoss absolute were added later). This is to say, 24 of the estimated 3,000 existing fragrance ingredients, or 0.8%. To conclude from this that all fragrances present a high, or even a moderate risk of skin allergy is negative bias, because it is not based on real-world risk.

Returning to the Skin Deep wording, something is amiss. A single reference is given for skin allergy, but no supporting evidence is cited for immunotoxicity, which is a much more serious hazard. This could be viewed as a deliberate manipulation of words and/or facts in order to mislead and suggest negative information that does not exist. Skin allergy is indeed a sub-category of immunotoxicity, but the principal meaning of the word – causing damage to the immune system – does not apply. But, because Skin Deep couches these terms together “Allergy/Immunotoxicity”, and because it has – quite correctly – defined immunotoxicity as damage to the immune system, any substance that can cause skin allergy is also flagged by implication, as reducing your capacity to fight disease, which is something totally different. Since there is no evidence of immunotoxicity, apart from skin allergy, this looks like negative bias again.

This is defined as “ingredient not fully labeled – identity unknown”. Indeed, fragrance is not a single ingredient, and the great majority of fragranced products do not fully declare their fragrant ingredients. This has been a subject of debate for some time, and is a reasonable criticism in terms of transparency. However, it is not, per se, any kind of risk assessment or toxicity rating, it is simply a fact, an observation.

This is defined as “Linked to neurotoxicity, or harm to the brain and nervous system, a class of health problems that can range from subtle developmental delays to chronic nerve degeneration diseases.” One reference is given, which is said to provide “moderate evidence” of neurotoxicity. The reference is: USHR (U.S. House of Representatives), 1986. Neurotoxins: At Home and the Workplace. Report by the Committee on Science & Technology, Report 99-827. Sept 16 1986. In this report it is claimed that over 95% of chemicals used in fragrances are synthetic compounds derived from petroleum, including benzene derivatives, aldehydes and other toxins and sensitizers capable of causing cancer, birth defects central nervous system disorders and allergic reactions.

The report is not a scientific study, and so what we have is nothing but hearsay. Somebody said/wrote something, so the “has been linked to” is satisfied! All fragrances have now “been linked to” neurotoxicity. This is a very serious charge. Note that the EWG claim is that they “provide additional information on personal care product ingredients from the published scientific literature.” Not always it seems. And note that ALL FRAGRANCE is flagged as being “linked to” neurotoxicity. “Benzene derivatives, aldehydes and other toxins and sensitizers” is, by the way, an interesting choice of words in itself, since it implies that all the benzene derivatives and/or aldehydes used in fragrances are toxic and/or skin sensitizing. This is simply not true.

Data gaps
This is explained as “not assessed for safety in cosmetics by industry panel.” This cryptic statement is odd to say the least. The implication is that no fragrance-related organization has assessed “fragrance” for safety in cosmetics. It seems that Skin Deep are unfamiliar with an organization called IFRA – the International Fragrance Association – that has been assessing fragrance for safety in consumer products for some 40 years. IFRA has many fragrance-related safety standards. That’s pretty much all they do. In my opinion, IFRA standards are often over-reaching and too stringent.  So, what exactly is meant by “Data gaps” for fragrance is, well, anyone’s guess.

At the end of the Skin Deep page on Fragrance is some useful information: “1,452 studies in PubMed science library may include information on the toxicity of this chemical” And then there is a link to PubMed. These are the search criteria: (”FRAGRANCE”[TW] OR “FRAGRANCE”[TW] OR “PARFUM”[TW] ) AND (*toxic* OR cosmet* OR derm* OR irritation OR sensiti* OR “personal care products” OR skin OR gavage OR mutagen* OR carcinogen* OR “biological activity”). Fine, great, useful, practical. What I really don’t get though, is why these 1,452 research papers are listed under the heading “Data gaps”. Isn’t this actually quite a lot of information?

Perhaps the Skin Deep approach is: “if you won’t tell us what’s in your fragrances, then we’re going to assume the worst”. But, since there’s very little evidence that fragrance causes any real harm anyway, assuming the worst involves some academic acrobatics that are shameful and not worthy of scientific credibility. Insinuation, implication and “has been linked to” is not evidence of anything, and the liberal use of this tactic shows negative bias.

Linalool: a narcotic?
A Google search for “Linalool: a narcotic” comes up with 19,200 hits. This is because the following piece of advice about a well-known fabric softener and dryer sheet fragrance is repeated that many times:

* Ethanol: On the EPA’s Hazardous Waste list and can cause central nervous system disorders.
* Limonene: Suspected Gastrointestinal or Liver Toxicant, Immunotoxicant, Kidney Toxicant, Neurotoxicant, Respiratory Toxicant, and Skin or Sense Organ Toxicant.
* A-Terpineol: Can cause respiratory problems, including fatal edema, and central nervous system damage.
* Ethyl Acetate: A narcotic on the EPA’s Hazardous Waste list.
* Camphor: Causes central nervous system disorders.
* Chloroform: Neurotoxic, anesthetic and carcinogenic.
* Linalool: A narcotic that causes central nervous system disorders.

I’m not going to go into the validity of every single claim made here, but I will tell you that most of it is either incorrect or highly misleading. Ethanol for example, known to most of us simply as alcohol, can of course cause CNS disorders if you drink enough of it. But in a dryer sheet? Are you kidding? Some of the sites that include the above information go into more detail on linalool:

LINALOOL Narcotic. Causes CNS disorders. …”respiratory disturbances” …”Attracts bees.” “In animal tests: ataxic gait, reduced spontaneous\motor activity and depression …depressed heart activity …development of respiratory disturbances leading to death.”

Abdominal injectionMediumThis information is entirely derived from LD50 testing of linalool (Jenner et al 1964, Letizia et al 2003). This is the classic test to find the single lethal dose for any substance. Rats and mice are most commonly used, and the dose cited is the one that is lethal to 50% of the animals. When you give a mammal a fatal dose of a substance it is not unusual to see some adverse effects on the nervous system, such as staggering, difficulty breathing etc., nor is it surprising if there are “respiratory disturbances leading to death.” Ataxic (unsteady) gait is probably mentioned in a majority of all LD50 test results. The oral LD50 values for linalool range from 2.2 to 3.9 g/kg, which is equivalent to an average adult human drinking 154 – 270 g (5.4 – 9.5 oz). In one of the studies, a non-fatal dose of linalool had a sedative effect on mice when injected into the abdomen at 178 mg/kg, and impaired muscle co-ordination (Atanassova-Shopova et al 1973). This is equivalent to a human dose of 12.5 mL, or 0.44 oz.

None of this means that your dryer sheets are going to kill you or your family. Nor will they cause you to faint, sway, fall over, lose control of your muscles, or otherwise behave as if drunk or dying. If you have multiple chemical sensitivity you may react adversely to any fragrance material, but not necessarily because that substance is itself inherently toxic. Unless you are in the habit of either drinking linalool by the cupful or injecting half an ounce of it into your abdomen, you may safely ignore these dire warnings, which have absolutely no relevance to the use of linalool in cosmetic or household products.

At least as far as essential oils are concerned, the EWG database reveals a shocking degree of ineptitude. They seem to have no idea which essential oils contain which constituents, and they only know about legal restrictions, which they automatically support 100%. If the EU says that linalool is a skin allergen, then it must be right. The EWG staff don’t seem to have read most of the toxicological literature, which they simply give a PubMed link to, and throw this in under “Data gaps”! They are just tossing out information hoping that some of it will stick. There is no science-based risk assessment, and the hazard ratings don’t tell you how much (or how little) of a substance is safe.

The EWG has helped stir up considerable hysteria about cosmetic safety. Increasingly, we see articles, blog posts and videos put out by people who are repeating misinformation and who often have no idea what they are talking about. That this should lead to the targeting of essential oil constituents is highly ironic, considering the very real healing benefits that they have to offer – from skin cancer prevention, to the treatment of antibiotic-resistant infections. And it is happening because of ignorance. We seem to entering a new Dark Age, where truth is measured by Google hit numbers, and scientific fact no longer counts for anything. In some cases safety legislation, instead of reflecting the science, is usurping and replacing it. Another irony is how EU cosmetics legislation is regarded in North America with something approaching reverence while in Europe it is regarded as, at worst, a Nazi-based tyranny (I’m not making this up – there’s quite a conspiracy theory…) and at best, a major hassle.

Atanassova-Shopova S, Roussinov KS, Boycheva I 1973 On certain central neurotropic effects of lavender essential oil. II communication: studies on the effects of linalool and of terpineol. Bulletin of the Institute of Physiology, Bulgarian Academy of Sciences 15:149-156

De Groot, AC 1987 Contact allergy to cosmetics: causative ingredients. Contact Dermatitis 17:26-34

De Groot AC, Coenraads PJ, Bruynzeel DP et al 2000 Routine patch testing with fragrance chemicals in the Netherlands. Contact Dermatitis 42:184-185.

Fregert S, Hjorth N 1969 Results of standard patch tests with substances abandoned. Contact Dermatitis Newsletter 5:85

Frosch PJ, Pilz B, Andersen KE et al 1995 Patch testing with fragrances: results of a multicenter study of the European Environmental & Contact Dermatitis Research Group with 48 frequently used constituents of perfumes. Contact Dermatitis 33:333-342

Gilpin S, Maibach H 2010 Allergic contact dermatitis from farnesol: clinical relevance. Cutaneous & Ocular Toxicology 29:278-287

Hostýnek JJ, Maibach HI 2003a Is there evidence that anisyl alcohol causes allergic contact dermatitis? Exogenous Dermatology 2:230-233

Hostýnek JJ, Maibach HI 2003b Is there evidence that linalool causes allergic contact dermatitis? Exogenous Dermatology 2:223-229

Itoh M, Ishihara M, Hosono K et al 1986 Results of patch tests conducted between 1978 and 1985 using cosmetic ingredients. Skin Research 28(Suppl.2):110-119

Jenner PM, Hagan EC, Taylor JM et al 1964 Food flavorings and compounds of related structure I. Acute oral toxicity. Food & Cosmetics Toxicology 2:327-343

Letizia CS, Cocchiara J, Lalko J et al 2003 Fragrance material review on linalool. Food & Chemical Toxicology 41:943-964

Santucci B, Cristaudo A, Cannistraci C et al 1987 Contact dermatitis to fragrances. Contact Dermatitis 16:93-95

SCCNFP 1999 Opinion concerning fragrance allergy in consumers: a review of the problem. SCCNFP/0017/98 Final

Schnuch A, Uter W, Geier J et al 2007 Sensitization to 26 fragrances to be labelled according to current European regulation. Results of the IVDK and review of the literature. Contact Dermatitis 57:1-10

Vocanson M, Goujon C, Chabeau G et al 2006 The skin allergenic properties of chemicals may depend on contaminants – evidence from studies on coumarin. International Archives of Allergy & Immunology 140:231-238

Vocanson M, Valeyrie M, Rozières A et al 2007 Lack of evidence for allergenic properties of coumarin in a fragrance allergy mouse model. Contact Dermatitis 57:361-364

Robert Tisserand is internationally recognized for his pioneering work in many aspects of aromatherapy since 1969 and frequent contributor to the aromaconnection blog.

Posted by Blogmistress on June 22, 2011 in Aromatherapy, Essential Oils/Plant Extractions, Organizations, Regulatory Issues, Research, Safety/Toxicity, Science | Permalink | Comments (0) | TrackBack

July 08, 2010

The Revealing Truth of the Money Trail of EWG

by Kayla Fioravanti, reprinted with permission.

With every stand that you take there are those that will stand with you, those that will digest the information and think about it and others who will take a stand against you.  I know that is a risk that I took when I chose to publicly stand against the Environmental Working Group (EWG) and their Skin Deep Database.


I debated posting what I found after I followed the money trail, since just my mention on social media that I was doing the research lost me a customer.  I'd prefer to remain neutral, but I fear that neutrality would result in continued damage to small businesses around the country by an organization that sadly lacks the science to back up their claims.  Being outspoken against the EWG may continue to cost me some customers, but I believe education is the key to fact based decisions and safe cosmetics.

In the past few months I have been terribly disturbed to see the Environmental Working Group send repeated emails requesting just another $10 donation.  Each letter sounds more dire than the next as if the world would literally end if the EWG didn't meet their budget. 

This inspired me to do a little digging to see just what Mr. Cook himself makes annually since he was making the earth shattering pleas for donations.  The only 990 I could get a hold of for the EWG was 2008

According to BA Carrington with Empowerment Enterprises, LTD, "They (EWG) have not filed a tax return on the 501 c 3 since 2008, according to the 990 database Exempt World, which is a subscription service to track 990’s.  Even though EWG is categorized as a charitable organization, it is still required to file a return under IRS codes and submit their “list of activities” to the IRS on an annual basis, even if they file an extension."  It could be that they have filed an extension and the deadline for the information has not yet passed based on their calendar fiscal year.  For more details on this possibility click here

The EWG has stepped up it's fundraising to now include promoting the purchase of the very same sunscreens that they claim are bad for you through Amazon to raise money for the EWG.  Read more about that topic click here.

According to 2008 IRS Tax Filings

In 2008 Ken Cook was paid $219.401.00 plus another $21,295.00 estimated amount of other compensation from organization and related organizations. 

Richard Wiles $179,218.00 plus $20,998.00 estimated amount of other compensation from the organization and related organizations. 

Jane Houlihan $150,226.00 plus $19,448.00 estimated amount of other compensation from the organization and related organizations. 

William Walker made $136,448.00 plus 19,743.00 estimated amount of other compensation from the organization and related organizations.

Susan Comfort $115,752.00 plus $7932.00 estimated amount of other compensation from the organization and related organizations.

Sandra Schubert $127,229.00 plus $4884.00 estimated amount of other compensation from the organization and related organizations.

Alexander Formuzis $120.592.00 plus $10,920.00.  Christopher Campbell $136,909.00 plus $11,988.00 estimated amount of other compensation from the organization and related organizations.

Breaking it all Down

In case you got sick of reading the pay that is a total of $1,185,775.00 being paid to the top 8 employees of the Environmental Working Group just in 2008.  The total estimated amount of other compensation from the organization or related organizations for the top 8 at EWG was $117,248.00.  The total reported 2008 salaries for EWG was $3,203,747.00 in 2008.  The 2008 total revenue at EWG was $6,242,570.00.  Over half of their total revenue went into paying the employees of EWG. 

I am not opposed to making a profit.  I believe in Capitalism.  I also appreciate that it takes time, money and resources to pursue any public policy position. But still, more than half of the operating budget is a lot.  I am troubled when a non-profit that asks for $10 via email and $5 most of the time you click on their Skin Deep website as if they are on the verge of going out of business is spending so much of your money on their executives. 

In 2006 Ken Cook was reported to have been paid $192,000.00.  If Ken Cook continued at the same rate of pay increase over the past two years as he did from 2006 to 2008 he may be making as much as $245,000.00 (only an estimate based on the pay rate of increase from 2006 to 2008).

No wonder I get so many requests for another $5 or $10 donation from the EWG. At 2008 pay rates they need at least 118,578 people to donate $10 just to cover their top 8 executives pay...who knows how much is needed to cover it in 2009 and 2010?!

You have to wonder if the EWG is really hurting for money or if they just like to keep their budget at a certain number.  In 2008 the net assets or fund balances were $5,171,374.00 at the end of the year.  They were given gifts, grants, contributions and memberships fees in 2004 of $4,975,899.00, 2005 of $3,539,214.00, 2006 of $3,478,044.00, 2007 of $4,004,846.00 and 2008 another $5,963,800.00. 

A very revealing, carefully documented and thoroughly research of the history of and who is behind the EWG can be found on the Personal Care Truth website (click here to read.)

The EWG, Skin Deep and the Campaign for Safe Cosmetics have made many claims that cosmetic companies are financially driven to claim that ingredients are safe, I am simply wondering if EWG has a financial interest in saying that they are not safe.  I don't know many small business cosmetic owners who are making as much money as the top 8 at EWG. 

I'm just saying...in this economy do they really need your $10?  What do you think?  Does knowing the money trail color your impression of the EWG as a non-profit?

Kayla Fioravanti and her husband Dennis own and operate Essential Wholesale

Ed. note: After reading Kayla’s excellent report and the comprehensive history at Personal Care Truth, as well as examination of available information  on the EWG website and other sources, several red flags wave.  These include, but may not be limited to, proportional ratio of administrative salaries vs. actual program funding; lack of transparency of donors as well as staffing and operations; unclear financial and staffing relationship between EWG and EWG Action Fund.  In 2002 an IRS complaint was filed against EWG asking for an investigation and revocation of their nonprofit status.  Further research is needed to establish the determination of that action.

Posted by Blogmistress on July 8, 2010 in Cosmetics, Organizations, Regulatory Issues, Safety/Toxicity, Science | Permalink | Comments (0) | TrackBack

November 05, 2009

Notes & News

A new lemongrass variety “suwarna” has been developed by the Central Institute of Medicinal and Aromatic Plants to address drought conditions with a limited amount of planting material released in Uttar Pradesh.  This new variety will produce about 200 kg of oil per hectare as compared to normal varieties that produce about 100-124 kg per hectare. This is an attempt to diversify the income of farmers, particularly those in drought-affected areas.

The International Aloe Science Council presents a scientific primer on aloe. IASC has assembled a comprehensive document exploring the different varieties of aloe, their health properties, cultivation techniques and more. Download this e-book to learn about:

  • commonly traded aloe species primarily used in the nutrition industry, and key components;
  • cultivation considerations;
  • aloe vera as a market commodity, including pricing information;
  • a detailed appendix on aloe species; and
  • details on requirements for organic certification.

The International Fragrance Association (IFRA) has appointed Aurore Boudet scientific and regulatory affairs manager. She will focus on the management and implementation of the IFRA code of practice, IFRA standards, and the compliance program.

The Research Institute for Fragrance Materials (RIFM) has formed an environmental adjunct group to support the expert panel’s efforts in environmental assessment of fragrance materials and development of IFRA Environmental Standard.  The group includes Michael McLachlan, professor of analytical environmental chemistry, Stockholm University, Sweden, and Beate Escher, deputy director of the national research centre for environmental toxicology, University of Queensland, Australia.  These appointments bring expertise in advising RIFM, especially  in the areas of environmental fate and bioaccumulation.

We at aromaconnection want to remind our community to support an outstanding nonprofit effort: United Aromatherapy Effort (UAE), headed up by Sylla Sheppard-Hanger, was founded in 2001 to support emergency and disaster relief workers by providing rejuvenating aromatherapy and massage services during long and arduous rescue efforts after 9-11.  The group continues to solicit aromatherapy supplies and monetary donations to provide support to U.S. troops in Afghanistan.  We urge you to visit the UAE website to learn how you can contribute.

Posted by Blogmistress on November 5, 2009 in Ecological/Cultural Sustainability, Essential Oils/Plant Extractions, Oil Crops, Organizations, Regulatory Issues, Research, Science, Trade Issues | Permalink | Comments (1) | TrackBack